Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 19(1): 111, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448325

RESUMO

BACKGROUND: Mithramycin is an anti-tumor compound of the aureolic acid family produced by Streptomyces argillaceus. Its biosynthesis gene cluster has been cloned and characterized, and several new analogs with improved pharmacological properties have been generated through combinatorial biosynthesis. To further study these compounds as potential new anticancer drugs requires their production yields to be improved significantly. The biosynthesis of mithramycin proceeds through the formation of the key intermediate 4-demethyl-premithramycinone. Extensive studies have characterized the biosynthesis pathway from this intermediate to mithramycin. However, the biosynthesis pathway for 4-demethyl-premithramycinone remains unclear. RESULTS: Expression of cosmid cosAR7, containing a set of mithramycin biosynthesis genes, in Streptomyces albus resulted in the production of 4-demethyl-premithramycinone, delimiting genes required for its biosynthesis. Inactivation of mtmL, encoding an ATP-dependent acyl-CoA ligase, led to the accumulation of the tricyclic intermediate 2-hydroxy-nogalonic acid, proving its essential role in the formation of the fourth ring of 4-demethyl-premithramycinone. Expression of different sets of mithramycin biosynthesis genes as cassettes in S. albus and analysis of the resulting metabolites, allowed the reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, assigning gene functions and establishing the order of biosynthetic steps. CONCLUSIONS: We established the biosynthesis pathway for 4-demethyl-premithramycinone, and identified the minimal set of genes required for its assembly. We propose that the biosynthesis starts with the formation of a linear decaketide by the minimal polyketide synthase MtmPKS. Then, the cyclase/aromatase MtmQ catalyzes the cyclization of the first ring (C7-C12), followed by formation of the second and third rings (C5-C14; C3-C16) catalyzed by the cyclase MtmY. Formation of the fourth ring (C1-C18) requires MtmL and MtmX. Finally, further oxygenation and reduction is catalyzed by MtmOII and MtmTI/MtmTII respectively, to generate the final stable tetracyclic intermediate 4-demethyl-premithramycinone. Understanding the biosynthesis of this compound affords enhanced possibilities to generate new mithramycin analogs and improve their production titers for bioactivity investigation.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Plicamicina/biossíntese , Policetídeos/metabolismo , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
2.
Angew Chem Int Ed Engl ; 59(2): 826-832, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31702856

RESUMO

MtmOIV and MtmW catalyze the final two reactions in the mithramycin (MTM) biosynthetic pathway, the Baeyer-Villiger opening of the fourth ring of premithramycin B (PMB), creating the C3 pentyl side chain, strictly followed by reduction of the distal keto group on the new side chain. Unexpectedly this results in a C2 stereoisomer of mithramycin, iso-mithramycin (iso-MTM). Iso-MTM undergoes a non-enzymatic isomerization to MTM catalyzed by Mg2+ ions. Crystal structures of MtmW and its complexes with co-substrate NADPH and PEG, suggest a catalytic mechanism of MtmW. The structures also show that a tetrameric assembly of this enzyme strikingly resembles the ring-shaped ß subunit of a vertebrate ion channel. We show that MtmW and MtmOIV form a complex in the presence of PMB and NADPH, presumably to hand over the unstable MtmOIV product to MtmW, yielding iso-MTM, as a potential self-resistance mechanism against MTM toxicity.


Assuntos
Produtos Biológicos/metabolismo , Plicamicina/biossíntese , Catálise
3.
Appl Microbiol Biotechnol ; 102(23): 10231-10244, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30259098

RESUMO

We previously developed an efficient deletion system for streptomycetes based on the positive selection of double-crossover events using bpsA, a gene for producing the blue pigment indigoidine. Using this system, we removed interfering secondary metabolite clusters from Streptomyces lividans TK24, resulting in RedStrep strains with dramatically increased heterologous production of mithramycin A (up to 3-g/l culture). This system, however, required a time-consuming step to remove the resistance marker genes. In order to simplify markerless deletions, we prepared a new system based on the plasmid pAMR18A. This plasmid contains a large polylinker with many unique restriction sites flanked by apramycin and kanamycin resistance genes and the bpsA gene for selecting a double-crossover event. The utility of this new markerless deletion system was demonstrated by its deletion of a 21-kb actinorhodin gene cluster from Streptomyces lividans TK24 with 30% efficiency. We used this system to efficiently remove the matA and matB genes in selected RedStrep strains, resulting in biotechnologically improved strains with a highly dispersed growth phenotype involving non-pelleting small and open mycelia. No further increase in mithramycin A production was observed in these new RedStrep strains, however. We also used this system for the markerless insertion of a heterologous mCherry gene, an improved variant of the monomeric red fluorescent protein, under the control of the strong secretory signal sequence of the subtilisin inhibitor protein, into the chromosome of S. lividans TK24. The resulting recombinant strains efficiently secreted mCherry into the growth medium in a yield of 30 mg/l.


Assuntos
Proteínas de Bactérias/genética , Deleção de Genes , Genes Bacterianos , Piperidonas/metabolismo , Streptomyces/genética , Sequência de Aminoácidos , Antraquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Marcadores Genéticos , Microbiologia Industrial , Família Multigênica , Plasmídeos/genética , Plasmídeos/metabolismo , Plicamicina/análogos & derivados , Plicamicina/biossíntese , Streptomyces/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/metabolismo
4.
Appl Microbiol Biotechnol ; 102(2): 857-869, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29196786

RESUMO

Mithramycin A is an antitumor compound used for treatment of several types of cancer including chronic and acute myeloid leukemia, testicular carcinoma, hypercalcemia and Paget's disease. Selective modifications of this molecule by combinatorial biosynthesis and biocatalysis opened the possibility to produce mithramycin analogues with improved properties that are currently under preclinical development. The mithramycin A biosynthetic gene cluster from Streptomyces argillaceus ATCC12956 was cloned by transformation assisted recombination in Saccharomyces cerevisiae and heterologous expression in Streptomyces lividans TK24 was evaluated. Mithramycin A was efficiently produced by S. lividans TK24 under standard fermentation conditions. To improve the yield of heterologously produced mithramycin A, a collection of derivative strains of S. lividans TK24 were constructed by sequential deletion of known potentially interfering secondary metabolite gene clusters using a protocol based on the positive selection of double crossover events with blue pigment indigoidine-producing gene. Mithramycin A production was evaluated in these S. lividans strains and substantially improved mithramycin A production was observed depending on the deleted gene clusters. A collection of S. lividans strains suitable for heterologous expression of actinomycetes secondary metabolites were generated and efficient production of mithramycin A with yields close to 3 g/L, under the tested fermentation conditions was achieved using these optimized collection of strains.


Assuntos
Plicamicina/análogos & derivados , Policetídeos/metabolismo , Streptomyces lividans/metabolismo , Streptomyces/enzimologia , Biocatálise , Vias Biossintéticas , Clonagem Molecular , Fermentação , Família Multigênica , Plicamicina/biossíntese , Saccharomyces cerevisiae , Metabolismo Secundário , Streptomyces/genética , Streptomyces lividans/genética
5.
Biochemistry ; 54(15): 2481-9, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25587924

RESUMO

More and more post-PKS tailoring enzymes are recognized as being multifunctional and codependent on other tailoring enzymes. One of the recently discovered intriguing examples is MtmC, a bifunctional TDP-4-keto-d-olivose ketoreductase-methyltransferase, which-in codependence with glycosyltransferase MtmGIV-is a key contributor to the biosynthesis of the critical trisaccharide chain of the antitumor antibiotic mithramycin (MTM), produced by Streptomyces argillaceus. We report crystal structures of three binary complexes of MtmC with its methylation cosubstrate SAM, its coproduct SAH, and a nucleotide TDP as well as crystal structures of two ternary complexes, MtmC-SAH-TDP-4-keto-d-olivose and MtmC-SAM-TDP, in the range of 2.2-2.7 Å resolution. The structures reveal general and sugar-specific recognition and catalytic structural features of MtmC. Depending on the catalytic function that is conducted by MtmC, it must bind either NADPH or SAM in the same cofactor binding pocket. A tyrosine residue (Tyr79) appears as a lid covering the sugar moiety of the substrate during the methyl transfer reaction. This residue swings out of the active site by ~180° in the absence of the substrate. This unique conformational change likely serves to release the methylated product and, possibly, to open the active site for binding the bulkier cosubstrate NADPH prior to the reduction reaction.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , Oxirredutases/química , Streptomyces/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , NADP/química , NADP/genética , NADP/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Plicamicina/biossíntese , Streptomyces/genética , Relação Estrutura-Atividade
6.
Microbiology (Reading) ; 161(Pt 2): 272-284, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416691

RESUMO

The mithramycin biosynthesis gene cluster of Streptomyces argillaceus ATCC 12956 contains 34 ORFs and includes two putative regulatory genes (mtmR and mtrY), which encode proteins of the SARP (Streptomyces antibiotic regulatory protein) and PadR transcriptional regulator families, respectively. MtmR was proposed to behave as a positive regulator of mithramycin biosynthesis. Inactivation and overexpression of mtrY indicated that it is also a positive regulator of mithramycin biosynthesis, being non-essential but required to maintain high levels of mithramycin production in the producer strain. Transcriptional analyses by reverse transcription PCR and quantitative real-time PCR of mithramycin genes, and promoter-probe assays in S. argillaceus polyketide synthase and regulatory mutants and the WT strain, and in the heterologous host Streptomyces albus, were carried out to analyse the role of MtmR and MtrY in the regulation of the mithramycin gene cluster. These experiments revealed that MtmR had a positive role, activating expression of at least six polycistronic units (mtmR-mtmE, mtmQ-mtmTII, mtmX-mtmY, mtmV-mtmTIII, mtmW-mtmMI and mtmGI-mtrB) and one monocistronic unit (mtmGII) in the mithramycin gene cluster. However, MtrY played a dual role in the mithramycin gene cluster: (i) repressing the expression of resistance genes and its coding gene itself by controlling the activity of the mtrYp promoter that directs expression of the regulator mtrY and resistance genes, with this repression being released in the presence of mithramycin; and (ii) enhancing the expression of mithramycin biosynthesis genes when mithramycin is present, by interacting with the mtmRp promoter that controls expression of the mtmR regulator, amongst others.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Plicamicina/biossíntese , Proteínas Repressoras/metabolismo , Streptomyces/genética , Transativadores/metabolismo , Transcrição Gênica , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Streptomyces/metabolismo , Transativadores/genética
7.
Metab Eng ; 20: 187-97, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24148183

RESUMO

Mithramycin (MTM) is a polyketide antitumor compound produced by Streptomyces argillaceus constituted by a tricyclic aglycone with two aliphatic side chains, a trisaccharide and a disaccharide chain. The biosynthesis of the polyketide aglycone is initiated by the condensation of ten malonyl-CoA units to render a carbon chain that is modified to a tetracyclic intermediate and sequentially glycosylated by five deoxysugars originated from glucose-1-phosphate. Further oxidation and reduction render the final compound. We aimed to increase the precursor supply of malonyl-CoA and/or glucose-1-phosphate in S. argillaceus to enhance MTM production. We have shown that by overexpressing either the S. coelicolor phosphoglucomutase gene pgm or the acetyl-CoA carboxylase ovmGIH genes from the oviedomycin biosynthesis gene cluster in S. argillaceus, we were able to increase the intracellular pool of glucose-1-phosphate and malonyl-CoA, respectively. Moreover, we have cloned the S. argillaceus ADP-glucose pyrophosphorylase gene glgCa and the acyl-CoA:diacylglycerol acyltransferase gene aftAa, and we showed that by inactivating them, an increase of the intracellular concentration of glucose-1-phosphate/glucose-6-phosphate and malonyl-CoA/acetyl-CoA was observed, respectively. Each individual modification resulted in an enhancement of MTM production but the highest production level was obtained by combining all strategies together. In addition, some of these strategies were successfully applied to increase production of four MTM derivatives with improved pharmacological properties: demycarosyl-mithramycin, demycarosyl-3D-ß-D-digitoxosyl-mithramycin, mithramycin SK and mithramycin SDK.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Glucofosfatos , Malonil Coenzima A , Engenharia Metabólica , Plicamicina/biossíntese , Streptomyces , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Glucofosfatos/genética , Glucofosfatos/metabolismo , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
8.
ACS Chem Biol ; 8(11): 2466-77, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23992662

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) have been shown to play key roles for the biosynthesis of important natural products. MtmOIV, a homodimeric FAD- and NADPH-dependent BVMO, catalyzes the key frame-modifying steps of the mithramycin biosynthetic pathway, including an oxidative C-C bond cleavage, by converting its natural substrate premithramycin B into mithramycin DK, the immediate precursor of mithramycin. The drastically improved protein structure of MtmOIV along with the high-resolution structure of MtmOIV in complex with its natural substrate premithramycin B are reported here, revealing previously undetected key residues that are important for substrate recognition and catalysis. Kinetic analyses of selected mutants allowed us to probe the substrate binding pocket of MtmOIV and also to discover the putative NADPH binding site. This is the first substrate-bound structure of MtmOIV providing new insights into substrate recognition and catalysis, which paves the way for the future design of a tailored enzyme for the chemo-enzymatic preparation of novel mithramycin analogues.


Assuntos
Antineoplásicos/farmacologia , Oxigenases de Função Mista/metabolismo , Plicamicina/biossíntese , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Humanos , Oxigenases de Função Mista/química , Estrutura Molecular , Especificidade por Substrato
9.
Angew Chem Int Ed Engl ; 51(42): 10638-42, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22997042

RESUMO

Two bifunctional enzymes cooperate in the assembly and the positioning of two sugars, D-olivose and D-mycarose, of the anticancer antibiotic mithramycin. MtmC finishes the biosynthesis of both sugar building blocks depending on which MtmGIV activity is supported. MtmGIV transfers these two sugars onto two structurally distinct acceptor substrates. The dual function of these enzymes explains two essential but previously unidentified activities.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Desoxiaçúcares/metabolismo , Glicosiltransferases/metabolismo , Plicamicina/biossíntese , Sequência de Carboidratos , Desoxiaçúcares/biossíntese , Glicosilação , Glicosiltransferases/biossíntese , Dados de Sequência Molecular
10.
J Med Chem ; 55(12): 5813-25, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22578073

RESUMO

Mithramycin is an antitumor compound produced by Streptomyces argillaceus that has been used for the treatment of several types of tumors and hypercalcaemia processes. However, its use in humans has been limited because of its side effects. Using combinatorial biosynthesis approaches, we have generated seven new mithramycin derivatives, which differ from the parental compound in the sugar profile or in both the sugar profile and the 3-side chain. From these studies three novel derivatives were identified, demycarosyl-3D-ß-d-digitoxosylmithramycin SK, demycarosylmithramycin SDK, and demycarosyl-3D-ß-d-digitoxosylmithramycin SDK, which show high antitumor activity. The first one, which combines two structural features previously found to improve pharmacological behavior, was generated following two different strategies, and it showed less toxicity than mithramycin. Preliminary in vivo evaluation of its antitumor activity through hollow fiber assays, and in subcutaneous colon and melanoma cancers xenografts models, suggests that demycarosyl-3D-ß-d-digitoxosylmithramycin SK could be a promising antitumor agent worthy of further investigation.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Plicamicina/farmacologia , Plicamicina/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Plicamicina/análogos & derivados , Plicamicina/biossíntese , Streptomyces/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Chembiochem ; 12(17): 2568-71, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21960454

RESUMO

Mix'n'match: Enzymatic total synthesis of TDP-D-olivose was achieved, starting from TDP-4-keto-6-deoxy-D-glucose, by combining three pathway enzymes with one cofactor-regenerating enzyme. The results also revealed that MtmC is a bifunctional enzyme that can perform a 4-ketoreduction necessary for D-olivose biosynthesis besides the previously found C-methyltransfer for D-mycarose biosynthesis.


Assuntos
Desoxiaçúcares/biossíntese , Açúcares de Nucleosídeo Difosfato/biossíntese , Plicamicina/biossíntese , Desoxiaçúcares/química , Enzimas/metabolismo , Glucose/análogos & derivados , Glucose/química , Açúcares de Nucleosídeo Difosfato/química , Oxirredução , Plicamicina/química , Nucleotídeos de Timina/química
12.
Biochemistry ; 48(21): 4476-87, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19364090

RESUMO

Baeyer-Villiger monooxygenases (BVMOs), mostly flavoproteins, were shown to be powerful biocatalysts for synthetic organic chemistry applications and were also suggested to play key roles for the biosyntheses of various natural products. Here we present the three-dimensional structure of MtmOIV, a 56 kDa homodimeric FAD- and NADPH-dependent monooxygenase, which catalyzes the key frame-modifying step of the mithramycin biosynthetic pathway and currently the only BVMO proven to react with its natural substrate via a Baeyer-Villiger reaction. MtmOIV's structure was determined by X-ray crystallography using molecular replacement to a resolution of 2.9 A. MtmOIV cleaves a C-C bond, essential for the conversion of the biologically inactive precursor, premithramycin B, into the active drug mithramycin. The MtmOIV structure combined with substrate docking calculations and site-directed mutagenesis experiments identifies several residues that participate in cofactor and substrate binding. Future experimentation aimed at broadening the substrate specificity of the enzyme could facilitate the generation of chemically diverse mithramycin analogues through combinatorial biosynthesis.


Assuntos
Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Plicamicina/biossíntese , Sequência de Aminoácidos , Sítios de Ligação , Coenzimas/metabolismo , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/metabolismo , Oxigenases de Função Mista/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Alinhamento de Sequência
13.
Chembiochem ; 9(14): 2295-304, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18756551

RESUMO

Mithramycin is an antitumor drug produced by Streptomyces argillaceus. It consists of a tricyclic aglycone and five deoxyhexoses that form a disaccharide and a trisaccharide chain, which are important for target interaction and therefore for the antitumor activity. Using a combinatorial biosynthesis approach, we have generated nine mithramycin derivatives, seven of which are new compounds, with alterations in the glycosylation pattern. The wild-type S. argillaceus strain and the mutant S. argillaceus M7U1, which has altered D-oliose biosynthesis, were used as hosts to express various "sugar plasmids", each one directing the biosynthesis of a different deoxyhexose. The newly formed compounds were purified and characterized by MS and NMR. Compared to mithramycin, they contained different sugar substitutions in the second (D-olivose, D-mycarose, or D-boivinose instead of D-oliose) and third (D-digitoxose instead of D-mycarose) sugar units of the trisaccharide as well as in the first (D-amicetose instead of D-olivose) sugar unit of the disaccharide. All compounds showed antitumor activity against different tumor cell lines. Structure-activity relationships are discussed on the basis of the number and type of deoxyhexoses present in these mithramycin derivatives.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Desenho de Fármacos , Plicamicina/biossíntese , Plicamicina/química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Carboidratos/biossíntese , Linhagem Celular Tumoral , Técnicas de Química Combinatória , Glicosilação , Humanos , Mutação , Plicamicina/farmacologia , Streptomyces/genética , Streptomyces/metabolismo , Trissacarídeos/química
14.
J Nat Prod ; 71(2): 199-207, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18197601

RESUMO

Plasmid pLNBIV was used to overexpress the biosynthetic pathway of nucleoside-diphosphate (NDP)-activated l-digitoxose in the mithramycin producer Streptomyces argillaceus. This led to a "flooding" of the biosynthetic pathway of the antitumor drug mithramycin (MTM) with NDP-activated deoxysugars, which do not normally occur in the pathway, and consequently to the production of the four new mithramycin derivatives 1- 4 with altered saccharide patterns. Their structures reflect that NDP sugars produced by pLNBIV, namely, l-digitoxose and its biosynthetic intermediates, influenced the glycosyl transfer to positions B, D, and E, while positions A and C remained unaffected. All four new structures have unique, previously not found sugar decoration patterns, which arise from either overcoming the substrate specificity or inhibition of certain glycosyltransferases (GTs) of the MTM pathway with the foreign NDP sugars expressed by pLNBIV. An apoptosis TUNEL (=terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay revealed that compounds 1 (demycarosyl-3D-beta- d-digitoxosyl-MTM) and 3 (deoliosyl-3C-beta- d-mycarosyl-MTM) show improved activity (64.8 +/- 2% and 50.3 +/- 2.5% induction of apoptosis, respectively) against the estrogen receptor (ER)-positive human breast cancer cell line MCF-7 compared with the parent drug MTM (37.8 +/- 2.5% induction of apoptosis). In addition, compounds 1 and 4 (3A-deolivosyl-MTM) show significant effects on the ER-negative human breast cancer cell line MDA-231 (63.6 +/- 2% and 12.6 +/- 2.5% induction of apoptosis, respectively), which is not inhibited by the parent drug MTM itself (2.6 +/- 1.5% induction of apoptosis), but for which chemotherapeutic agents are urgently needed.


Assuntos
Antibióticos Antineoplásicos , Plicamicina , Antibióticos Antineoplásicos/biossíntese , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Técnicas de Química Combinatória , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Plicamicina/análogos & derivados , Plicamicina/biossíntese , Plicamicina/química , Plicamicina/farmacologia , Streptomyces/química , Streptomyces/genética , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Appl Microbiol Biotechnol ; 73(1): 1-14, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17013601

RESUMO

Members of the aureolic acid family are tricyclic polyketides with antitumor activity which are produced by different streptomycete species. These members are glycosylated compounds with two oligosaccharide chains of variable sugar length. They interact with the DNA minor groove in high-GC-content regions in a nonintercalative way and with a requirement for magnesium ions. Mithramycin and chromomycins are the most representative members of the family, mithramycin being used as a chemotherapeutic agent for the treatment of several cancer diseases. For chromomycin and durhamycin A, antiviral activity has also been reported. The biosynthesis gene clusters for mithramycin and chromomycin A(3) have been studied in detail by gene sequencing, insertional inactivation, and gene expression. Most of the biosynthetic intermediates in these pathways have been isolated and characterized. Some of these compounds showed an increase in antitumor activity in comparison with the parent compounds. A common step in the biosynthesis of all members of the family is the formation of the tetracyclic intermediate premithramycinone. Further biosynthetic steps (glycosylation, methylations, acylations) proceed through tetracyclic intermediates which are finally converted into tricyclic compounds by the action of a monooxygenase, a key event for the biological activity. Heterologous expression of biosynthetic genes from other aromatic polyketide pathways in the mithramycin producer (or some mutants) led to the isolation of novel hybrid compounds.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Antibióticos Antineoplásicos/farmacologia , Plicamicina/biossíntese , Plicamicina/farmacologia , Antibióticos Antineoplásicos/química , Plicamicina/análogos & derivados , Plicamicina/química , Streptomyces/genética , Streptomyces/fisiologia
17.
J Am Chem Soc ; 127(50): 17594-5, 2005 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-16351075

RESUMO

MtmOIV, the key oxygenase of the mithramycin biosynthetic pathway in Streptomyces argillaceus, was proven to act initially as Baeyer-Villiger monooxygenase, but may also catalyze various follow-up reaction steps. The reaction of the overexpressed pure His6-tagged enzyme with its substrate premithramycin B was studied. Various intermediates and products were isolated and physicochemically characterized, several of them being previously unknown compounds. This is the first example in which a bacterial enzyme was unequivocally proven to act as Baeyer-Villigerase with its natural substrate, that is, in its natural context.


Assuntos
Oxigenases/metabolismo , Plicamicina/biossíntese , Streptomyces/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , NADP/metabolismo , Oxirredução , Oxigenases/biossíntese , Oxigenases/genética , Streptomyces/enzimologia , Streptomyces/genética
19.
Chem Biol ; 11(1): 8-10, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15112986

RESUMO

In this issue of Chemistry & Biology, Méndez and colleagues describe the sequence and organization of the chromomycin gene cluster. Unexpectedly, the arrangement is starkly different from the mithramycin biosynthetic cluster, despite similarity in the individual genes and the near identical structures of the two antibiotic aureolic acids.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Proteínas de Bactérias/genética , Cromomicinas/biossíntese , Plicamicina/biossíntese , Antibióticos Antineoplásicos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Genes Bacterianos , Estrutura Molecular , Família Multigênica , Plicamicina/química , Streptomyces griseus/genética , Streptomyces griseus/metabolismo
20.
J Biol Chem ; 279(9): 8149-58, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14660589

RESUMO

The antitumor drug mithramycin consists of a polyketide chromophore glycosylated with a trisaccharide and a disaccharide. Two post-polyketide methylations take place during mithramycin biosynthesis. One of these methylations has been shown to be very relevant for biological activity, that is the introduction of a methyl group at aromatic C-7. We have purified to 282- fold the MtmMII methyltransferase involved in this reaction. The protein is a monomer, and results from kinetic studies were consistent with a model for the enzyme acting via a compulsory order mechanism. The enzyme showed high substrate specificity and was unable to operate on structurally closely related molecules. Structural predictions suggest that the molecule is integrated by two domains, an essentially all alpha-amino domain and an alpha/beta-carboxyl domain displaying a variation of a Rossmann-fold containing the cofactor binding site. Although 7-demethyl-mithramycin did not show any biological activity, it was able to reach the nucleus of eukaryotic cells, with subsequent binding to DNA. Mithramycin and 7-demethylmithramycin were able to form similar complexes with Mg(2+), although their respective DNA binding isotherms were very different. The dinucleotide binding model fit well the isotherms recorded for both compounds, predicting that the C-7 methyl group was essential for high affinity binding to specific GC and CG sequences. Considering previous structural studies, we propose that this effect is performed by positioning the group in the floor of the minor groove, allowing the interaction with the third sugar moiety of the trisaccharide, d-mycarose, which is involved in sequence selectivity.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Metiltransferases/metabolismo , Plicamicina/biossíntese , Sequência de Aminoácidos , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Núcleo Celular/metabolismo , Fenômenos Químicos , Físico-Química , DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Cinética , Magnésio/metabolismo , Metilação , Metiltransferases/química , Dados de Sequência Molecular , Estrutura Molecular , Plicamicina/metabolismo , Plicamicina/farmacologia , Alinhamento de Sequência , Streptomyces/enzimologia , Streptomyces/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...